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REPETITIVE PLAY OF AN UNKNOWN GAME AGAINST NATURE 

V 
by Bruno 0. Subert 

ABSTRACT 

A repetitive play of a game against Nature Is considered under the 

assumption that the player knows nothing about the game except his own 

set of strategies. After each play, he is told the value of the random 

loss Incurred by him. A strategic rule for the player Is defined with 

the property that the average loss achieves asymptotically the minimum 

functional of the game In probability uniformly In all sequences of 

Nature's strategies. The rate of convergence of expected average losses 

Is shown as well. 
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Chapter I 

INTRODUCTION 

Let us  consider a sequence of plays of a two-person game,   the 

generic game,  where the first player is "Nature."    The term "game against 

Nature"  is widely used in both game theory and statistics,  but in various 

senses.    Nature is sometimes considered as a player with motivations un- 

specified or unknown to the other player or sometimes as a player who 

chooses his strategies so that they form a sequence of independent, 

identically distributed random variables.    Here, we will define Nature 

as a player who selects his strategies arbitrarily but with no regard 

whatsoever to the actions of the other player or to the resulting sequence 

of payoffs.     Besides the fact that this notion seems to correspond better 

to the intuitive idea of Nature as a passive player, our definition is 

motivated mainly by the application of the problem of repetitive play of 

a two-person game--called henceforth a sequential game--to statistics. 

Our concept of Nature implies that she selects the whole sequence of her 

strategies arbitrarily but once and for all at the beginning of the 

sequence of plays, which is exactly the case considered in the so-called 

sequential compound decision problem of mathematical statistics.    This 

concept, which includes the third concept mentioned above (called the 

empirical Bayes approach in statistics),  differs, however,  from the first 

two, which are,  in any case, rather vague. 

As for the second player--to be referred to as the pi ay er--he is 

considered a player in the true sense of game theory;  that is,  he is 

supposed to select his strategies with the intention of minimizing the 

payoff to his opponents,  i.e.,  his loss.    Since we are going to consider 

the whole situation from the point of view of the player, we will talk 

about losses rather than payoffs.     In the sequential game,   it is assumed 

that the player will utilize for his strategy choices any information 

about the development of the sequence of plays he may have obtained or 

inferred during the past plays in the sequence.    Of course,  he is not 

supposed to know the sequence of Nature's strategies beforehand;   other- 

wise,  his  task would be trivial. 

* 
Provided he knows the loss function.    If not,  then this case is Included 
in the case we are considering in this paper. 

1 SEL-67-098 



Since we are dealing with the sequential game,   the natural criterion 

of player's performance In the long run Is the average loss Incurred by 

him.    It has been Indicated  (see,  e.g.,  [6],  [4],   or [9])  that the goal 

he should try to achieve is reduction of his average loss  to the minimum 

loss of a single game of  identical structure.  In which Nature (the other 

player) would use the mixed strategy equal to the empirical distribution 

up to the point of the pure strategy sequence she is using In the seouen- 

tial game.    The problem thus consists essentially in finding a rule for 

the player, which would guarantee him that he will achieve this goal, at 

least asymptotically, no matter what sequence of strategies Nature uses. 

In the past decade or two,  several papers have dealt with this 

problem,  especially its application to statistics.    After the pioneering 

works of H. Robbins [6]  and A. Spacek [8], who both confined themselves 

to the empirical Bayes problem, two basic strategic rules with the desired 

property were stated by D. Blackwell in [2],  [3],  and by J. Hannan in [4]. 

All the other rules suggested later were derived essentially from one of 

these two basic rules. 

Various approaches to the problem may be classified according to 

the assumptions made about the information available to the player. 

This,  in turn, may be divided into assumptions about 

(1) the knowledge of the generic data of the game,  i.e.,  the sets 
of strategies  and the loss function,  and 

(2) the data received during the sequence of plays,   i.e.,  for 
example,  the strategies used by Nature in past plays of the 
sequence or the losses incurred. 

Both D. Blackwell and J. Hannan assumed that  (l) the player has 

complete knowledge of the generic game and that  (2) after each play, he 

learns the strategy Nature used.    In the statistical version of the 

sequential game,  the variety of possible assumptions in either category 

1 and 2 is,  of course,  much wider.    Nevertheless,  as far as is known to 

the author,  it has always been assumed that at least  (l;  the player knows 

the loss function of the generic game and  (2) a random estimate of some 

sort is available to estimate the empirical distribution of Nature's 

strategies. 

SEL-67-098 
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In this paper, we are going to make entirely different assumptions 

about  the player's information.    We will assume that: 

(l)    Except for his own set of strategies from which to choose,  the 
player knows nothing about the generic game;   i.e.,  he knows 
neither the set of Nature's strategies  (which may be Infinite) 
nor the loss function.    Moreover,  the loss function itself is 
supposed to be random. 

(2j    After each play,  the player is told the value of the random 
loss incurred by him in the play. 

We will define a rule for the player based on these two requirements. 

Later we will show that,  under relatively moderate assumptions--namely, 

the set of player's strategies are finite and the random loss function 

has a nonnegative mean and uniformly bounded third moment--the rule pos- 

sesses an optimality property similar to those of Blackwell's and 

Hannan's rules.    More precisely, we will show that the difference of 

the average loss and the appropriate value of the minimum functional 

of the generic game goes to zero in probability uniformly in all sequences 

of Nature's strategies. 

To illustrate the extent  to which the player's information is re- 

stricted,   let us consider the following simple example.    Suppose that 

both Nature and the player each has two strategies,   say  $       ,  $ 

and    a       ,  a      ,    respectively.    The player is asked to play repeatedly 

one of  the two games: 

NATURE 

PLAYER 

.(0) 
a<1> 

(o) 
5 0 x 

*(1' X o ! 

NATURE 

PLAYER 

a(o) 
•<1' 

8
(0) X o    1 

,<*' X 0 

GAME  I GAME  2 

where the entry 0 means that  the player's loss is zero,   while,   if the 

entry  is X,   a coin is tossed and the player Incurs a loss,   say |l,  if 

the outcome of  the toss  is a head,   and zero if  it is  a  tail.    Clearly, 

the best rule for game 2 would be to use the strategy a^   '  all  the time. 

SEL-67-098 



On the other hand, the best rule for game 1 will depend on the relative 

frequencies of each 5   and ^   in the sequence of Nature's strategies 

and is, therefore, different from the first one.  However, by our assump- 

tions, the player knows nothing about the game but the set (a  , a   ] 

and therefore he cannot distinguish between game 1 and game 2.  Thus he 

cannot decide which of the two rules mentioned he should use, even if he 

were supplied some information about the sequence Nature is going to use. 

The rule defined In Chapter III of this paper is, however, invariant 

with respect to the game structure and allows the player to do as well 

as If he were told both the relative frequencies of ,3  , ^   and which 

of the two games he has to play. 

The rule Is relatively simple and more or less suggested by intuition. 

Before each play in the sequence, the player decides whether the play is 

going to be a test play (aimed to gain information) or an active play 

(aimed to minimize the loss). These decisions are based on the outcomes 

of random experiments--independent flips of a coin where the probability 

of a head (determining a test play) goes to zero. At a test play, a 

strategy is chosen randomly with equal probabilities. At an active play, 

the strategy is selected for which the loss accumulated during the past 

test plays was minimum.  In other words, each strategy is tested from 

time to time, more and more infrequently but still often enough to guar- 

antee the adequacy of the estimate obtained for the player's decisions. 

The rule is defined in Chapter III. Chapter II introduces the 

notation, basic assumptions, and properties of the generic game. In 

Chapter IV several lemmas are proven; these are needed for the proofs 

of Chapter V. Chapter V contains the main theorem (Theorem l), in which 

the convergence of average losses Is established; Theorems 2 and 3, which 

give the rate of convergence of expected average losses; and Theorems 4 

and 5, which deal with the special case when Nature's moves constitute a 

sequence of Independent Identically distributed random variables. Dis- 

cussion of the results and comments on possible generalizations are con- 

tained in Chapter VI. 
I 

In this paper, we confine ourselves deliberately to the case of 

sequential games against Nature and do not extend the results to the more 

I general case of the sequential compound decision problems.    Our intention 

SEL-67-098 
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is to investigate the game situation in detail and thus to establish a 

basis for further extension to the statistical decision case.  It has 

been shown by the author [10] that this can be done.  It is hoped that 

this work may stimulate further effort in this direction. 

SEL-67-098 
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Chapter II 

PREREQUISITES 

A.   Notation 

Throughout this paper,   the symbol  (n,A,P) will always denote the 

basic probability space,  where Q, with generic elements ui Is the set of 

elementary events,   A is a. cr-field of subsets of n,   and P Is a probability 

measure on  (ft,<0«    Random variables will be designated by capital letters, 

with the argument u omitted unless necessary.    Sets from A defined as 

sets of those u>€n for which a statement 9 Is true will be denoted by  (9*]. 

The Indicator function of a set H will be denoted by Iu;  the complement 

of a set MCQ,  by M .    The expectation of a random variable X will be 

denoted by E{X);   conditional expectation of X given the cr-fleld   7CA 

Induced by a random variable Y will be denoted either by E(X|Y} or by 

E(X|5] and used in the sense of the definition In [5],  p.  341;  similarly, 

for conditional probability.    Other symbols and/or definitions will be 

used in accordance with [5]. 

As for other mathematical symbols,  a real-valued function f will 

sometimes be written as f(.) to distinguish it from its value f(x) for 

the argument x.    If f is defined on a finite ordered set A, we will also 

use the symbol f(.) to denote the Euclidean vector with components f(a), 

acA.    The symbol R   will stand for m-dimenslonal Euclidean space;  the 
m components of a vector x€R    will be denoted by superscripts In paren- 

theses:    x = (x      ,...,x       ).    The Inner product of two vectors    x€R 

and y€Rm will be denoted by x*y.     If  (x  :  n = 1,2,...}  Is a numerical 

sequence,  the symbol  (x  ) will denote the arithmetic mean 

n 

\ 
k=l 

If (y > 0: n = 1,2,...} is another sequence of rerl numbers, the symbol 

x = o(y ) will designate the property 
n     n 

SEL-67-098 
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B.  The Generic Game 

As mentioned In the Introduction, a sequential game consists of 

repetitive plays of a generic game. In this section, we will define 

and investigate some properties of the latter. Since our model of a 

sequential game should serve primarily as a basis for the sequential 

compound decision problem, the terminology and symbols introduced below 

differ slightly from those common in game theory proper. 

Let 9 be an abstract set-'the get of parameters ^; let A = {a  ,.. 

a^m'}--the set of strategies--be a finite set of m elements. 

Let 10« (W(j,a): ^c@, aeA] be a two-parameter family of integrable 

random variables such that for every Well) 

0 < E{W} < + oo . (2.1) 

We will call 10 the random loss function. The triplet (8,A,10) will be 

referred to as a generic game. 

In this paper, we will always assume that the generic game (9,A,10) 

is nondegenerate in the sense that for every aeA there exists ^c9 such 

that 

E{wU,a)) / 0 . (2.2) 

Clearly,   there is hardly any loss of generality in this assumption since 

we can always augment the set 9 and the family 10 so that  (2.2) is true. 

In subsequent sections, we will be making some further assumptions 

concerning integrabllity of the family 10.    For reference purposes,  let 

us call 

Assumption  (10;  r);  r > 1 an integer:    There exists a finite constant 

Cn such that for every ^e9 and aeA 
r o 

1/r 
|E|wU,a)IrJ        <C0. 

SEL-67-098 
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Assumption (li'; QQ): There exists a finite constant C such that for 

every ^eS and a€A 

Next, we have to Introduce mixed strategies. The set A being 

t 
(m). 

finite, a mixed strategy a is simply defined as a vector a = (a  ,..., 

a  ) from the (m-l)-dimensional probability simplex Ü in R , 

Ü= |aeRm: a^1^ > 0; 1 = 1 m; S  a^1' = 1 

m 

(2.3) 

1=1 

We will need a similar concept defined for the set of parameters 8. 

Let 3" be the cr-field of all subsets of 8; let T be the class of all 

finite signed measures on the measurable space (8,7) defined by the 

property: for each T€T there exists a finite set (■ö1,...,^ ) such that 

T(9 - U1,...,fln)) = 0 . 

In other words, all the measures TCT are purely atomic with a finite 

number of atoms. As an analog of the set of mixed strategies Ü will 

serve the subclass T of all probability measures in T.  If T6T is o r ' o 
such that T((T3}) = 1 for some $e&,  we may write simply -a instead of T. 

From now on, let us denote 

w(fl,a) = E{w(^,a)) , (2.4) 

where   w(^,a)€li),  and let for every T€T, aed, 

m 

w(T,a) = f y w(«,a(l)) a(l) <n(o) .       (a.s) 
4 1.1 

Since, by the definition of the class T, the Integral in (2.5) is only a 

finite sum, w(.,.) is a well defined finite function on T x Ü,  More- 

over, it is easily seen that with addition and multiplication by a 

9 SEL-67-098 



constant naturally defined on both T and Ü, w(.,.) is also a bilinear 

functional on T x Ü. 

Let (9,A,U,i) be a generic game with a random loss function; let for 

every T€T, 

(P(T) = mintwCT.a)} . (2.6) 
aeA 

We will call cp the minimum functional of the generic game (8,A,11?). 
""                   «  / * (1) 

The minimum functional has a simple property. Let s = (s     
*(m)                  m                           (l) 

s   ) be a mapping from R into (1 defined for every x = (x    
(m)v m . 

xN ')£R    by 

if  x'1^ <  min   (x^^] 
j=l,... ,m 

>*(i)(x)= |a(i)  if  x(i)=  mm  [^))    , (2.7) 
J=lf... ,m 

if  x^1^ >  min   {x^} 
j=l,... ,m 

1 = l,...,m. Then, clearly, for every TeT, 

9(T) =w(T,s*(w(T,.))) . (2.8) 

We will use this property to prove the following lemma to be needed 

later. 

Lemma 1. Let TeT, x€R , a = s (W(T,.) + x), a2eü. 

Then 

WCT.O^) ■ w(T,a2) < x« ia2-aj  . (2.9) 

Proof. 

Let t eT be such that w(t ,.) = x.  It is easy to see that such t 
x x > 

exists for every xeR since, by assumption (2.2), we can always find 

{■a, ^ }C 9 such that w(^. ,a^  ) j^ 0 for every i = 1,... ,m and then 
1     m l 

SEL-67-098 10 
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set ^([^1) = x^^wC^.a^O]"1;   i = 1 m;   and 

t   (9 -   (•S1i...,^m)) = 0. x im 
Next,  by  (2.6)  and   (2.7) 

cp(T + tx) = W(T + t^.öj) < W(T + tx,a2)  , (2.10) 

which implies 

o < W(T + tx,a2) - W(T + tx,a1) . (2.11) 

Finally, linearity of w(.,a) gives 

w(T + ^,0^) = W(T,O^) + x • 0^;  ^ = 1,2 ;        (2.12) 

which together with (2.1l) gives (2.9). 

This completes the Proof of Lemma 1. 

C.  The Sequential Game 

In the sequential game against Nature, Nature first selects a 

sequence of parameters ■8-,-ö0,... from the parameter space 6. For further 
1  2 

purposes, we will assume that the sequence always begins with a "dummy" 

parameter 4 such that 

wUo,.) = WoUo,.) = 0 . (2.13) 

00 
We will denote the set of all sequences £ = {d : n s 0,1,...} by 6 , 

this representing the set of all Nature's strategies in the sequential 
00 

game. With every sequence ■$ = (^ : n = 0,1,... }£@ , we will associate n 
a sequence (T £T:  n = 0,1,...} defined by 

n 

Tn^ = n   S   W1  BeJ;   n = 1'2""''  To(,) = 0  ' (2'14) 

k=l 

Thus, for n = 1,2,..., T £T is the empirical distribution of -Q  defined 
n o 

by U, ,...,i3 }, and T (B) is the proportion of T3 's, k = l,...,n, in B. 
x     n       n K 

11 SEL-67-098 



Let [a : n = 1,2,...] be a sequence of pure strategies used by the 

player. The result of the sequential game is then a sequence of random 

losses defined as a sequence of independent random variables 

(WnUn>an): n = 1,2,...) , (2.15) 

where the random variable W (^ ,a ) is distributed as W^.ajeU' for 
n n n 

■a = -a , a = a . 
n      n 
As mentioned before, the player selects his mixed strategies at each 

play on the basis of his past experience, using for his choices a stra- 

tegic rule, which tells him for each n = 1,2,.., the mixed strategy S 

he has to use at the n-th play.  Since each S thus depends on the out- 

comes of the past plays and since the strategic rule itself may be a 

randomized rule, the sequence {S : n = l,2,...}--to be called the sequence 

of mixed strategies generated by the rule--is a sequence of random vectors 

with values in 0. 

A strategic rule also generates a sequence of pure strategies 

(¥ : n = 1,2,...) defined as a sequence of random variables with values 

in A such that if ? denotes the cx-field induced by the family (S.  
n oo 

S  ; W-(^. ,.) W U  ..)) then for every n = 1,2,...;   -ace ,  1 = l,...,m n      i    i n   n 

PUT    = a^) 5   >=S^,        a.s. (2.16) V n Jl  nj       n 

and 

*    and W (^  ,.) are independent. (2.17) xn n    n 

SEL-67-098 12 
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Chapter III 

THE STRATEGIC RULE 

In this chapter, we will define a strategic rule satisfying the 

assumptions we made about the Information available to the player. 

Later (Chapter V) we will show that this rule Is weakly asymptotically 

optimal in the sense that if (f : n = 1,2,...} is the sequence of pure 

strategies gent-rated by it, then 

H   VVV ■ ^n^0 
k=l 

00 
uniformly in jjCT .  This means that, by using this rule, the player can 

do as well ns iI he knew all the data about the game structure and if he 

were told the asymptotic empirical distribution of the i3's In the sequence 

Nature is going to use. Moreover, he can do this uniformly in all 

Nature's possible choices. More precisely, given € > 0 and & > 0, there 

exists a positive Integer n(€,&) with the property that, if the number 

of plays exceeds n(c,5), the average loss will differ from the goal cp 

more than e with probability less than & no matter what the sequence of 

-S's was used by Nature. The Integer n(e,8) can be obtained from Theorem 

2 or Theorem 3 of Chapter V, which give the rate of convergence. 

Let 

{Un: n = 0,1,...} (3.1) 

be a sequence of independent random variables, taking values 0 and 1, 

and let for every n = 0,1,... 

P{U = 1} = p > 0 . (3.2) 

Further, let 

(V : n = 0,1,...} (3.3) 
n 

13 SEL-67-098 



be a sequence of Independent identically distributed random vectors 

taking values In the set Ü and such that for every 1 =  1 m, 

"K-K 6i)} = ""'1' ^-^ 
where 6 . Is the Kronecker delta. 

The random variable U determines whether the n-th play will be a 
n 

test play (u = l) or an active play (u = o), while the V determines 
n '     n n 

the strategy to be used in a test play. 

The sequences (3.l) and (3.3), as well as the sequence (2.15), are 

also assumed to be mutually independent (for every ^c9 ). 

Next, let 

{Y : n = 0,1,...] (3.5) 

be a sequence of random vectors with values In R    defined for every 

^€9 ;  n s 0,1,...  by 

n        n    n   \ nn/n 

where r\ =  (rp  ,...,T]  ) is the vector with all components r\        = I. 

Thus the vector Y has either all components zero (if Un = 0) or has 
n (l) 

only one nonzero component, namely that one for which V   =1, the com- 

ponent being then equal to mp  (l + W (<8 ,l)). 

The sequence (3.5) therefore represents the information the player 

is receiving along the sequence of test plays, namely, the pure strategy 

used and the loss Incurred. 

The strategic rule we are suggesting Is defined by means of the 

sequence of mixed strategies [S  : n = 1,2,...] generated by it as 

follows: 
'n-l 

3 = U V + (l -U )s | > Y. J , 
n   nn  v   n'lZ^kl 

\k=0  / 

00 

where s is the mapping (2.7). 

SEL-67-098 14 



Notice that 
'n-1 

s„ - s*( I \ 1 
k=0 

If the n-th play is an active one, thus selecting the strategy a  eA 

for which 

n-1 

2 
k=0 

Y(i) 
k 

is minimum and in a test play S = V selects any acA with equal 
n   n 

likelihood. 

We will refer to this strategic rule as to the strategic rule (*), 

15 SEL-67-098 
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Chapter IV 

SOME AUXILIARY RESULTS 

In this chapter, we are going to prove several lemmas, which will 

be used in the next chapter. 
00 

Let ^ = {^ : n = 0,1,... )e9 be a sequence of ^'s; let {Y : 

n = 0,1,...} be the sequence of random vectors (3.5). By the assumption 

of integrability of the random loss function 

EMi)}s i + w(va(i)): i = i"-"m ^-^ 
exists and is finite so that we can center the random vectors Y at n 
expectations: 

Y    = (Y^ Y<n));  Y(i^ = Y(l)  - E/Y^I;   i = 1 «  .       (4.2) n\nn/n n ^nj x 

We will need bounds for absolute moments of the random variables 
~(i) /       \ Yv  .  Let us assume that the assumption (10;r) holds for some r > 3, 

and let 1 < *"'  < r.    We have 

K{i5ii)i"|»A-(1))}-h;1h«.k.'(1))]-h-(^.*(1))]r'--lp. 

M-[i+'(v(i,)]r'(i-"i-n) 

+ 2|l +w(aii,.
(l,)|r (4.3) 

by the C -inequality  ([5],  p.  155) and the fact that 

-1      ^ , ^   r'-l  l-r' m    p    < 1 < m        p rn —     - n 
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Further, by (lC;r) there exists a finite constant C such that, say 

Ejl + Wn(^,a)|r < cj for every ^€9, aeA , (4.4) 

and consequently by Jensen Inequality also 

|l + w(^,a)|  <C  for every ^€9, a£A . (4.5) 

Hence and from (4.3) we have Immediately 

E^fl^f' *T'-Vn'
r'. (4.6) 

Next, let us Introduce the random variables 

*„  = K    - K   ' 4 = i..••.»>; J = i »; n = o.1  (4-7) n n n 

By the C -Inequality and  (4.6) we have now 

lY^'' KUCJ' rar,-Vn-
r'   • (4.8) 

~(ll)   / 
We will need also a lower bound for the variance of IT  , 1 ^ J. 

n 
Direct computation gives 

r 2 2 "1 2 

'^P^nK'^0)!  +E|1 + Wn(\'a(j))l J" l^ij)|  .(4.9) 

where we denoted 

AiiJ) = w(va(i)) ■ w(va(J)) • (4-10) 

Using again Jensen Inequality 

E|i + wn(\.a)|2 > I1 + *(\.a)|2 . (4.11) 
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we obtain from  (4.9) 

2 

* K1 ■ ^«ak.*<lV-'K-<J))] 

+ K
1 - l)[w2(v»(i}) *w2(V.^^ (4.12) 

since w(.,.) is nonnegative [assumption (2.l)].    Hence,  if p    < m    , 

we have 

ElY^ij)|    >2mp;1  . (4.13) 

Thus we have proven 

~(i)    ~(ij) 
Lemma 2. Let Y*  and Y   , 1 = 1 m; 1 = 1 m; be the random 
""""""—■      n       n 

variables (4.2) and (4.7), respectively; let assumption (10;r) for 

some r > 3, be satisfied. Then there is a constant C < + » such 

that for every n = 0,1,... and 1 < r1 < r 

ElY^V' <(2C1)
r,mr,-1p;■r,   . (4.14) 

and 

(ij)i'       fAn  ^'  r'-l 1-r ElY^'l    <(4Cirmr-Xr    • (4.15) 

If, moreover,  p    < m     ,   then for 1 j^ j 

E|Y^ij)|     >2mp^1  . (4.16) 
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~(il) 
Since the random variables Y J'; n = 0,1,...; are independent, 

their consecutive sums have another property expressed by 

Leauna 3. Let 

k=0 

n= 1,2,...;   i = l,..,,m;  j = l,...,m;   i f J,   let p    <m     ; 

n ss 0,1,...;   let assumption  (ü?;3) hold.    Let j(x  ,x  ) denote 

either of  the intervals [x. ,x  ),   (x   ,x ],  where -<» < x    < x    < +oo . 
1  *       1   £ 12 

Then 

•1/2 

^)eJU1.V}<(.J-1){a.)-^.^(|p^ 
k=0 

+ 32cjß m1/2 
n •3/2 

1 pk2(S pk 
k=0    \k=0 

(4.18) 

where C is the constant from Lemma 2 and ß is the Berry-Esseen 

constant. 

Proof. 
idj) Let FV"J/ denote the distribution function of the law n 

-1/2      n f n 2\'1/'i      n 

kk=0 / k=0 
k 

let G be the distribution function of  the normal law ^(o,!).    Since the 
~(ij) random variables Y are independent,   centered at expectations  and,  by 

Lemma 2,  have positive variances,   the Berry-Esseen normal approximation 

theorem  ([5],   p.   288) applies,  yielding 

SEL-67-098 20 
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sup      ltlij)(x)-G(x)|  <ß   f ElY^^lYi K|Yiij)|2\       ■    (4.19) 
xe(-00'+oo) k=o \k=o      s        / 

Let F^iJ' be the distribution function of the law £(z^iJ');  let n n 

/      n \ 1/2 

k=0 

Since 

we have 

, k=0 / k=0 

F(ij)(x)=P(lJWij))  . n      x  '        n      \    n       / 

Further, using Lemma 2, we find 

n / n 9V3/2 n / n X-3/2 

k=0 \k=0 / k=0 \k=0 

Thus (4.19) becomes 

IF.
(IJ,

(«) - «.r.^1 Vli < i«c? .i/2 y p:Vy P:
IV3

 
2 

X€(-oo,+oo) 
k=0 \k30       /(4.20) 

Finally, by the well known property of the distribution function G and 

Lemma 2, 

i^y^^^nu^-i^^)'1 

< (x2 - x1)(2m)-l/2 nW ^   P"' ) • (4.2l) 
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Inequalities   (4.20) and  (4.21),   together with the fact that  the Berry- 

Essen Theorem holds both for right-continuous and left-continuous distri- 

bution function    F       '    prove  (4.18). 

The following lemma is a trivial generalization of  the law of 

large numbers. 

Lemma 4.     Let   (X  :  n = 1,2,... ]  be a sequence of random variables with 

distributions depending on a sequence of parameters .£ =  {3  : 
00 

n =  l,2,...)e9 ;   let  (J  :  n = 0,1,.,.} be a sequence of sub-a- 

field of i.     If 

n 
■2 

n 

k=l 

\ E|X |2 -► 0 uniformly in $(i$° (4.22) 

and if the family (X ,...,X } is 5 -measurable for every n = 1,2,.., 

^eG00, then 

n p oo 
1 Y (Xk - E{Xk|fk_1)) *• 0 uniformly in ^€9 .      (4.23) 

k=l 

Proof of Lemma 4. 

The proof is straightforward.    Let e > 0,  let X^ = Xn - ElXjif^). 

By Tcheblchev Inequality 

n •> n 2 

p |iXxiUeUxHSxkl •       (4-24) 

U       k=l       ' J        n€ knl 

However,   since by assumption {X   X )  is J -measurable,   the random 

variables X'   are centered at expectations given the predecessors so th 
n 

the extended Bienaym6 Equality  ([5],  p.  386) holds.    Therefore 

EI i K\* -1 »KI
2
 s i w 

k=l k=l k=l 
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which,   together with  (4.24) and assumption   (4.22) gives   (4.23). 

This completes  the Proof of Lemma 4. 

Later,  we will use one simple lemma on sequences of positive real 

numbers. 

Lemma 5.     Let   (p   :   n = 0,1,...}  be a sequence of positive numbers such 

that for  every n = 0,1,... 

(n+ l)p     .   > np     . (4.25) 
n+1 —      n x 

Then 
n-1 

liminf 

****    npn    k=0 

^  I   „k1 > 0   • (4.26) 

Proof. 

By  (4.25) we have for every n = 1,2,... 

Hence 

p,"    > - p'   ,  k = 0,... ,n-l  . (4.27) 
k    - n    n x 

npn    k=0 k=0 

as n "►+<». 

Lemma 5 is proven. 

The remaining three lemmas  constitute essential parts of  the 

theorems in the next chapter. 

Lemma 6.    Let   {Y  :   n = 0,1,...}  and   {Y   :   n = 0,1,...} be the sequences 

of random vectors   (3.5) and   (4.2),   respectively; let 

S; = s*(   ^   Yk j ,   n = 0,1  (4.29) 
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and let 

(lC;r) hold for some r > 3  . (4.30) 

If the sequence (p  :  n = 0,1,...]  of probabilities  (3.2) satisfies 

the conditions 

Pni    0   , (4.31) 

and 

np    t    +oo  , (4.32) 

then 

n 
1   V   ~ .  P 00 . . -    >    Y   • S' -► 0 uniformly in all sequences J69    . (4.33; 

k=l 

Proof. 

Let y^1-" be the random variables (4.7). Since S'cü for all 
n ^ n 

n = 0,1 we have the Identity 

i y ?  s. = i y y i y Y<iJVl) *i f ^^ t ^^ •   (4-34) nZ-kkmZ-Z-nZ-k        k m^Ln^Jk 
k=l i=l J=l      k=0 1=1      k=l 

By Lemma 2  (4.14) and the condition (4.3l), we have for every J = 1 m; 

n s  1,2,... 

n-2   £  EIY^I < (2C1)
2mn-2   ^ p^1 < (2C1)

2m(npn)-1   ,       (4.35) 

~(i) which goes to zero by (4.32).     Since  the random variables Y        are 

independent and centered at expectations,  the weak law of  large numbers 

(or Lemma 4 with '.i    induced by  {Y;1^ Y^ '}) yields n in 

n 
1  y   ^(i) P 0 uniformly in «e00  . (4.36) 
n  ^     k * 

k=l 
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In view of   (4.34),  it remains to prove that for any i = 1 m, 

j  = 1 n».   i f j , 

n 

n   5  ^k      Sk        ^ 0 uniformly in leeC0 • (4'37) 
k=l 

Let nj  ,   n = 0,1,...,  be the cr-fleld Induced by the family  {Y  ,...,Y }. 

Since,   clearly, 

fY(ij)S'(i) Y(ij)S'(i)\ \ o       o '  n        n      | 

is ij  -measurable for every n = 0,1,...,  and since by Lemma 2  (4.15), 

(4.31),   and   (4.32), 

n'2   S   El?kij)sk(i)I    ^n"2   S   El?kij)|    ^ 0 uniformly  in ^e"  ,(4.38) 
k=l k=l 

we obtain  (4.37) from Lemma 4 if we prove that for any i  ^ J 

n 

n S Erki sk    Vij ^ 0 uniformlyin i6®00 • (4-39) 
k=l 

Let 

«")=< 

c  n 

«=x,...,m 
rU) 

l.k=0 k=0 

(4.40) 

.(i) y   vf1^ <        min 
lk=0 *"1 m k^O 

f(i) (4.41) 

n 

r  n 

k=0 

y Y(i) 
£=l,...,m k=0 

mln (4.42) 
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so that by the definition of S1 

n 

o.U) _ T , JO T 
n H(i) L(i) 

n n 

whence,  since 0 < a'1' < 1 and IT1^ U L^1' = K^1', ^ — n n n        ' n n 

H(l) "    n        -   K(i) 
n n 

(4.43) 

Therefore, almost surely 

I n    I n 

< max (4.44) 

We will consider first 

^\M H' 
U n-1     * 

(4.45) 

Let  {7  :  n s 1,2,...] be a sequence of positive real numbers  (truncating 

constants);  let 

r(i) = *n r(ii) 

i=i  n 
(4.47) 
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\ 

Since clearly 

Y (ij)T     sUj), 

n n   n 

Y(ij) I , (4.48) 

and since the random variable |Y   jl, /.u  is independent of li 

we have almost surely m n-l 

vA 
n 

^J n-l - E' Ä(ij)T 

n    n 
^n-l < E' ,Yn  'I/Ji)\c 

Further 

Hi 

(4.49) 

(4.50) 

and by the definition of the random variable Y 

^l))\  O i => l?^)! > 7n . (4.51) 

which,   in turn,  implies that either )r  '(u) = 1 or V^   '(u) = 1.    Hence n n 
either 

or 

|Y^(w)| > 7    for all ^ = 1 »;  A ^ i   . 1   n ' n 

|Y'1ÄH<i))| = 0 for all A = 1 m, Ä ^ i  . 

Therefore, 

i=i v n   ; 

implies that either  |Y^iJ^(u))I  > 7n or  |Y^iJ'(u))| = 0 so that 
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^V^'^V'r (4.52) 

However, 

K Y n  IVdj))^^  
LlYn  ! <(4C1) m  (-.npn) 

by assumption (4 30) and Lemma 2 (4.15), so that (4.49) becomes 

1-r 

ffliij)lH(i)Vl   •  E 
n n 

y n-l 

<  (4C1)
r >nr'1(7nPn)1'r a-8-       (4-53) 

Next,  let us denote for i a l,...,m 

n-l 

k=o k=0 k=0 

n-l 

n ^ ?(U) <rn-l iU) 

,CU) 

k=0 

n-l 

k=0 

.ir^-^-ll (ii) 

k=0 k=0 

(ii) where the numbers &}        are defined by (4.10). Also let 

m 

i^l ^1 

(ii) 
iin 

(4.54) 

(4.55) 

(4.56) 

(4.57) 

It Is easily seen that 

H^ = n H^) 
n       X=i   n 

(4.58) 
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and for i j^ i 

H(U)CH(ii)nr(ii)ciF(ii) > 
—n      n     n 

whence 

Thus 

H(i)CH(i)nr(i)c^) . 
—n     n     n     n 

Yn  lM„M)-Yn        Ki^^Ji)      Yn   ^(D^^d) 
n    n n    n n    n 

(4.59) 

(4.60) 

-    "   V0   n    H(i) " ' n  'V0- H(i)   n   H(l) ' 

nnd, similarly, 

Y(ij)I r^   ^^>- |Y(ij)|l r^   m+^Im.   (4.62) 
n    n n   —n —n 

Since, by definition, both H   and H   are «»j  .-measurable sets we 
n     -n      Jn-1 

have 

I     -n      J   -n 

a.s. , (4.63) 

and by Lemma 2 (4.15), 

>.       n   —n      •' 

a.s.  (4.64) 

We are now going to show that for suitable choice of the truncating 

sequence [y  ] 

I / v   / \ -► 0 as n -» oo uniformly in ^e6 , 

H   - H 
n   —n 

(4.65) 
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which Is equivalent to showing that 

An  ' ^n ) ■* 0 as n - 00 uniformly In $£& . (4.66) 

First, since 

-Tl      i = 1 \ "       ""    / 

i^i 

(4.67) 

(^ - »i1') < 2 *$*> ■ ^') .       U.as) 
i=l 

-(li) (ii) Next,   the set-theoretical difference IV    '   -  H can be written as n —n 

H(ii)   - H^1^   = i n -n (n-l)"1/2,    -   (n-1)-1/2   S 4^<Z^ 
'n Z^    k        —    n-1 

k=0 

< (n-1) 7n -   (n-1) ^  ^k -e) 

k=0 

,  n = 2,3 (4.69) 

and since there is no loss of generality by assuming p    < m    , 

n = 0,1,...,  Lemma 3,  together with (4.68),  yields 

'(iii1,-äi1,)<-^1/2(|^'1/2 

n / n \-3/2 
3 ö«3/2 V „-2i 

k=0 \k=0 
'-X/2 I C( I-ii1 ;  n = 2,3        (4.70) 

From the conditions   (4.3l) and  (4.32),   it follows that the sequence 

(p     :   n = 0,1,...]  satisfies the hypothesis of Lemma 5.     The statement 

then  implies that there is a positive constant c    < 1 such that for every 

n = 1,2,... 
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n-1 

conp
n-i ^ 2 pk 

k=0 

(4.71) 

Moreover, by (4.3l) also 

n-1 

2 PkÄ - npnÄ; Ä = 1'2 ' (4.72) 

k=0 

(4.73) 

Applying these two Inequalities to (4.70), we obtain 

p(H(i) -H(i)N)<7 M
1/2 c-l/2 n-l/2 p1/2 \ n —n  / — 'n       o n 

3  -3/2  3/2 ,   \-l/2 
+ 32C c*/'i£m'3/'   (np ) ^^ ; n = 2,3  

10 n 

and trivially also for n * 1 (for c small enough if necessary). 

We will now select the constants y  .    To minimize both (4.53) and 
'n 

the first term on the right-hand side of (4.73) simultaneously, we 

mquire y    to  satisfy the equation 

(4^) m   (7nPn)   = 4C17n(2m) '     co 
n Pn     ■ (4.74) 

For such a y   ,   the inequality  (4.73) becomes 

pfc^   -  H^1^ <   (4CJ2 21/2 c-l/2 m3/2   (np   ^ ' ^ y n -n     / —  x    1 o v 'n 

3    -3/2      3/2   /       v-1/2 + 32C,   c     '    ßm '     (np   )     '      ,  n = 1,2,...   , 1    o v    n (4.75) 

and the right-hand side of the inequality (4.53) becomes 

/.„ '^ nl/2 -1/2 3/2 ,  \l/2r- l/2      , „        /* **\ (4C1) 2  '     co  '     m '     (npn) '     '  , n = 1,2     (4.76) 

Now it is obvious that both these bounds tend to zero as n -► -H» so that 

(4.66) holds, and by (4.53) we conclude that (4.45) goes to zero in 

probability uniformly in ^eö. Finally, it is easily seen that exactly 
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the same reasoning applies If we replace the set H   and all the sets 
(l) n 

related to It by the set K ' and similarly related analogs. 

Therefore also 

E Y^I 
n        K(i) 

n 

P ■•j .jf^O uniformly in ^£6 ,        (4.77) 

which in view of (4.44) yields (4.39). 

The proof of Lemma 6 is terminated. 

Lemma 7. Let the hypothesis of Lemma 6 be satisfied.  Then there is a 

finite constant C. such that for every n = 1,2,... and _öe8 

|E{Yn • S;}] < c//2inpn)l/2r-  1/2 . (4.78) 

Proof. 

Since the random vectors Y are centered at expectations, the 

identity 
m  m 

? .s. =1 V V y^s.^+iy Y
(i) (4.79) 

n  n  m Zw Zw  n   n     m Zw  n 
1=1 J=l 1=1 

yields 

lE^n-S^l^«   maX  lEi^V^I '        (4.80) 
1=1,...,m 
J=l m 

Proceeding similarly as in the proof ol Ltanma 6, we conclude that both 

the inequalities (4.44) and (4.53) hold with conditional expectations 

replaced by unconditional ones. The same is true for the relations 

(4.63) and (4.64) so that (4.75) and (4.76), together with the remark 

at the end of the proof of the previous lemma, gives for every 1 ^ j, 

n = 1,2 ^e8 , 

lE^V^^ISc//2^)1/2-1/2 . (4.81) 
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where the constant C_ Includes the constants C,, c , S. 
2 1   o 

Lemma 7 Is proven. 

Lemma 8.  Let the hypothesis of Lemma 6 be satisfied with the assumption 

(U';r) replaced by the assumption (IT;00).  Then there Is a finite 

constant C_ such that for every n = 1,2,... and ^e@ 

Il-{Yn.s;)( < C3.n
5/2(npnr

l/2 . (4.82) 

Proof. 

The proof Is only a modification of the proofSJ of Lemma 7 and Lemma 6. 

Clearly, (IT;») Implies (IT;3) so that the hypotheses of the two previous 

lemmas are satisfied. Moreover, under (li?;°o) there is a finite constant 

C. such that for all i = l,...,m; n = 0,1,...; 

lY^I < C mp'1 a.s. (4.83) 
I n  I — 4 n 

and consequently also for all J = 1 m 

|Y^iJM < 2C>,mp"
1 a.s. (4.84) 

I n  I —  4 n 

Thus we can set 

7n = 
2C4mPn  . n = 1,2,... 

In (4.46) whence In (4.48) 

I  (i)  = 0 a.s. (4.85) 

(rn ) 

so that the right-hand side of (4.49) Is zero and the first term on the 

right-hand side of (4.73) becomes 

„3/2 „  -1/2 3/2 /   v-l/2 /„ offN 2 '  C, c '  m '  (np )  '  • (4.86) 
4 o n 
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1 

This Implies 

|E{?ilj)s;(l))l<C3»3/2(npn) 3/2/_ r1/2 (4.87) 

for every 1 ^ J; n = 1,2,...; ^€9°, which together with (4.80) proves 

Lenma 8. 
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A 

Chapter V 

MAIN THEOREMS 

Theorem 1. Let [f : n = 1,2,...) be the sequence of pure strategies 

generated by the strategic rule (*) defined In Chapter III; let 

the sequence of probabilities (3.2) satisfy the conditions 

Pn . 0 , (5.1) 

and 

np  T +«> as n -► -H» ; (5.2) 
n 

let the assumptions (2.1), and (U';r) for some r > 3 be satisfied. 

Then 

n 

\1   VVV-   ^n)-0 (5-3) 
k=l 

00 
uniformly In all sequences J60 . 

Proof. 
00 

Let jS be an arbitrary sequence from 3 ; let for n = 1,2,...,? be 

the cr-field induced by the family of random vectors 

(WoUo,.) 
w
n(V-); Sl Sn+15 ' ^'^ 

where S Is defined by (*). 
n 

By (2.16) and (2.17) we have for every n = 1,2,... 

Efw^v^lVi) =*(\'SJ        a-s- (5-5) 

00 
Furthermore,   (I0;r),   r > 3,   implies  that for  every n = 1,2 ^€0 

and  1 < r'   < r 

KIW   (tf    SJl1"'  < c^'   . (5.6) 1   n    n    n   '       —•    o 
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Therefore,  by Lemma 4,   (5.3) is equivalent to 

n 

n X W^VSn^ ' ^Tn^ ^0 unlformly in 1*^° • (5'7) 
k»l 

Let (£': n « 0,1,...} be a sequence of random vectors defined by 

Sn = 8#(l0 ' (5-8) 

where (Y : n = 0,1,...) la the sequence (3.5), and let us denote 

n  n ^  n n   T n 
k=l 

X' = i 7 *(«n.Sl) - cp(T )    \ (5.9) n  n £*        n n   T n    ) • 

and 

k=l 

n 

K'll  ^n'K-J -  ^Tn) 
k=l 

We have 

lXn-
Xni^jiHVV-^V8k^l (5-10) 

k=l 

and 

ixn-x;i^Ji HvV - wK'sk^ • t5-11* 
k=l 

Let (U : n = 0,1,...} be the sequence of random variables (3.l). Since 
n 

by (♦) and (5.8), U = 0 => Sn = ^^  and by (3.6) and (5.8), 

U = 0 => Y = 0 => S' = S'  , we conclude that 
n       n       n   n-1 

|wUn.Sn) - «(^.S;^)! >0=>Un=l , (5.12) 
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and also 

|wU   ,S   )   -  w(^    S')l   > 0 => Un  =  1   . (5.13) 1       n    n n    n   ' n 

From this and (5.6), It follows that the right-hand sides of both (ö.lO) 

and (s.ll) are both bounded by 

n 

2C - > U. , 
o n Z^  k 

k=l 

which goes to zero almost surely because of the condition (5.1). Thus 

we have 

|X - X'l a-s- o and  |X - X"I a^8' 0 , (5.14) 
' n   ni I n   ni x 

00 
both uniformly in ^<-0 . 

We are going to prove that the random variables X' are bounded from 

above and the random variables X" from below by random variables that 
n 

00 
both tend to zero in probability uniformly in £e8 . This, in view of 

(5.14), will prove (5.7). 

Let us start with X*. Using (2.14), we obtain 

n 

k'sl 

Lk=l k=l J 

n-1 

= \ 1   *MW -  w(Tk'Sk+l^ 
+ n[^Tn'Sn^ ^Tn^ ' 

k=l 

n = 1,2,... . (5.15) 

Let 
n 

Z = n'1'2 V Y: n = 1,2,...; Z =0, (5.16) 
n       Zw  k o 

kaO 
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where Y = Y - K{Y )i n = 0,1  By the definition of the mapping 

s and by (4.l), we have 

*( i    \    -1/2   \ = s w(T . J + n    Z,, J ,  n = 1,2  
\  n n/ 

(5.17) 

where tjeR is the vector with all components equal to one. Applying now 
-I/2 

Lemma 1 with x = k   Z. , a. = S', ct- = S' . to the summands In (5.15) 
-1/2 •/     \ 

and with x = n '  Z , a. = s (W(T ,.)), a0 = S' we obtain in view of n      1 \      n      /      z        n 
(5.17) and  (2.6) the relation 

k=l 

k=1 (5.18) 

However by  (5.16) 

(k-l)l/2 Zk_1 - kl/2 Zk = - Yk  :    k = 1,2,...   ; (5.19) 

so that  (5.18) becomes 

X«  <-  i V   Y-S/  ^n"1/2 Z  .s*(w(T   ,.))  , n-nZ^kk n      \xn/ 
(5.20) 

k-1 

The first term on the right-hand side of  (5.20) goes to zero in proba- 

bility uniformly in ^€0    by Lemma 6.    Next,  since s  (W(T ,.))e(ii 

"•1/2v>(v •))<-.-    \1^ 1=1,...,m k=0 

(5.21) 
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~(i) However,   the random variables Y^  ';  k = 0,1,,..;  are Independent and 

centered at expectation,   and by Lemma 2  (4.14) and   (5,1) 

n 2 n 

n"2   J     lY^I    <  i2Cl)
2 mn2   ^   p"1 < ^f mn'^n+^p^1   ,     (5,22) 

k=0 k=0 

which goes to zero by the condition (5,2). Hence by the weak law of 

large numbers  ([5], p, 234, prop, b) 

n Z-  k 
k=0 

-*■ 0 uniformly in ^cQ00 (5.23) 

for all i = l,..,,m. Because of (5,2l), the same is true for the last 

term of (5.20) so that 

limsup X' = 0 in probability uniformly in ^€8 .    (5,24) 
n-Hoo 

It remains to show that also 

liminf X" = 0 in probability uniformly in ^€0°° ,    (5.25) 
nrH«> 

For this, let us write using again (2.6) 

n 

X" = - S k[w(T ,8' .) - W(T ,8')] + w(T ,8«) - qp(T ) .   (5.26) n  n  £, * k k-1      k k       n n   r n 
k=l 

Using (5.17) and applying apain Lemma 1 to the summands, this time with 

a0 = 8'  , we obtain 

"^k^k-^ ■ '^k'8^ -kl/2 zk(sk ■ sk-l) • (5-27) 

Or Lemma 4 with ? induced by (Y^1' Y^M. n ^ o  '   ' n  J 
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Further by  (2.6) 

w(Tn,S^) -   cp(Tn) > 0   , (5.28) 

■o that 

it 

x: > i 7 kl/2 K<K - s'   ) n — n   Z- k% k        k-l' 
k=l 

n 

-; i (c-1'1^ vi ■kl/2 z
k)-s-i+ °'1/a z«s; • (5-M) 

k-l 

Hence by (5.19) and the fact that S'eU, we obtain n 

X" > - -  V   Y'S' n -      n  Z,   ,k k-l •«       lit?'0 
n   Z-     k ;     n = 1,2  

1=1 a      k=0 (5.30) k«l 

Let,  for every n = 0,1 y   denote the a-field Induced by the family 
n *%. 

(Y ,...,Y }. Since the random vectors Y and S' , are independent and 1 o    nJ n     n-1 
8'  i» V  -measurable, we have for all n = 1,2,... 
n    n 

E{Y 'S' .k J = E(Y ) «S'   = 0    a.s.        (5.31) 1 n      n-l\JR-l n'      n-1 

Hence, by Lemma 4 and (5.22), 

n 

- Y Y.  S^.i ^ 0 uniformly in ^€9 , 

k-l 

and by (5.23) the same is true for the last term in (5.30). Thus (5.25) 

holds and Theorem 1 is proven. 

Because of assumption (U;;r), the dominated convergence theorem 

implies that under the conditions of Theorem 1 also 
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" 1 K'n Z M V\M " ^J ",, 0  uniformly in ie9 • 
.  k=l i 

(5.32) 

It is, nevertheless, of interest to investigate the rate of this 

convergence. 

Theorem 2. Let t. ! hypothesis oi Theorem 1 be satisfied. 

Then 

n 

K n 1   Wk(\'^) 

k=l 

' " 9(Tn) = 01 max 
/—x  //   x-l/2 + l/2r\ (pn). ^(nPn)        j 

(5.33) 

uniformly in all sequences ^£8 . 

Proof. 

Proceeding exactly as in the proof of Theorem l,we observe that the 

random variables (5.9) satisfy for every n = 1,2,... the inequality 

X" - 2C i > U, < X < X1 + 2C - > U, . (5.34) 
n    onZwk— n— n    o n ZL  k 

k=l k=l 

Since the random variables U take values 0 and 1 with PfU =1} = p , 
n l n   J  "n 

we have 

n n 

WV   ■ 2Co ^ S Pk ^ K(Xn) < E{X;) + 2Co i ^ pk .     (5.35) 

k=l k=l 

Furthermore, the Inequality (5.20), Lemma 7, and the fact that 

K[Z  ]  = 0 imply 
n 

n 

KC;) s v5/2 j 2 Kr1/2tl/2r' (5-36> 

k=l 

and the Inequality (5.30), independence of Y and S'  , and K(Y ) = 0, 

k = 1,2  give 
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ECX") > -        max       E 
1=1, >.. ,in 11 Ki) 

k=l 

(5.37) 

Next,  by Jensen Inequality, Blenayme Equality,   and  (5.22) we have 

for every 1  = 1 m 

K ;2 ?(i) 
k 

k=l 

<E 

k=l 

n 

n   /^     k n  ^L 
1 v    Mi) 

k 
k=l 

< (2C1)
2 m(npn)'

1   , 

so that   (5.35)  becomes 

n 

• 2C1»1/2 K)'1'2 - «o : 2 'R S Elx,,) 
k«l 

n n 
^„    5/2I   V    /,      ^l/2 + l/2r      „^    1   V < C„m '     -    >     (kp, )    ' '       + 2C    -   >    p, 
-    2 n   Z- k' o n   Z-     k 

k=l k=l 

However,  by   (5.l),   (5.2),  and r > 3, 

1   S:   ft.    ^-l/2 + l/2r _    ,       rl/2 
n   1   (kpk) ^  (npn) 

ksl 

so that the first term in (5.39) is lower-bounded by 

n 
•l/2 + l/2r 11 H)' 

k=l 

Theorem 2 is proven. 

(5.38) 

(5.39) 

(5.40) 
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Theorem 3. Let tii , hypothesis of Theorem 1 be satisfied with the 

assumption (li^r) replaced by the assumption (U;00). 

Then 

E n S VVV 
k=l 

. - Cp(T ) Y n o|max (pn), ((npn)"
l/2Uj   (5.4l) 

uniformly in all  sequences jeQ. 

Proof. 

The proof is verbatim that of Theorem 2,   except that Lemma 8 is 

used instead of Lemma 7  so that the exponent  l/2r vanishes from  (5.36), 

(5.39),   and   (5.40),   and  the constant C„ is  replaced by the constant C„ 

of Lemma 8. 

To the end of  this chapter,   let us consider the case in which the 

sequences ^ of Nature's  strategies are sequences of  independent identically 

distributed random variables.    More precisely,   let us suppose that Nature 

at  the beginning of  the sequence of plays  selects a probability measure 

T from a class T    of probability measures defined on the measurable space 

(©.TL).    The class T1 and the cr-fleld 3.,   not necessarily identical with 

those introduced in Chapter II,   are supposed to be given,  however,   unknown 

to the player.    We also assume that the random loss function IC is such 

that for every aeA,  T€T..,w(.,a)  is for almost  every uiCfi a fl  -measurable 

and T-integrable function. 

In this setup,   let TeTj and let 

{*n:  n = 1,2,...} (5.42) 

be a sequence of  Independent identically distributed random mappings  from 

(n,^)  into  (9,1.)  such that P*      = T and such that the sequences   (5.40), 

(3.l),   (3.3),  and   (2.15) for any fixed ^€0    are mutually independent. 
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Theorem 1 then yields Immediately 

n 

n Z Wk^\,fk^ " ^"^ ^ 0 uniformly In T€T1 .      (5.43) 

k=l 

However, we may establish a stronger convergence In this case. 

Theorem 4.  Let (¥ : n = 1,2,...} be a sequence of pure strategies 

generated by the strategic rule («) of Chapter III; let the sequence 

of probabilities (3.2) satisfy the conditions 

n 
and 

P„ i 0 (5.44) 

1-e ,   , 
n  p t + oo for some € > 0 ; (5.45) 

n 

let the assumptions (2.2) and (W;2) be satisfied. Then 

n 

IS vw - ^ "*'o ^•4^ 
k=l 

uniformly In all TeT r 

Proof. 

Let TeT.  ana let again 7   denote the cr-fleld induced by the family In 
(5.4), where now 4.,$,,... is the sequence (5,42).    By the measurability 

and integrablllty assumption we made about the random loss function, we 

have now Instead of  (5.5) 

ElWn(*n'*n)lffn-l) = w(T'Sn) a•8• (5,47) 

Hence, using the assumption (l0;2) and Stability Theorem ([5], p. 387), 

we conclude that (5.44) is equivalent to showing 

n 

-  V   W(T,S ) - (P(T) 
a■^B•  0    uniformly in TeT,   . (5.48) 

n   ^ n        T 1 
k=l 
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X 

Let X   ,  X1  and X"  be defined as in  (5.9) with o    and T    replaced by T, n      n n n n ' 
By the same reasoning as in the proof of Theorem 1,  we conclude  that 

(5.14) holds again,  now uniformly in TeT. . 

By the relation  (5.17) and Lemma 1 we have 

wCr.s;) - cp(T)<i^ V[S*(W(T(.)) -s; 
k=0 

<       max 
i=l,...,m 11 

k=0 

;(i) (5.49) 

and by the assumption (IT;2) and Lemma 2 (4.14) for every i a 1,...^ 

1 2 n 

^k^ElY^I  < (2^)^ ^ k"2 p"1  .        (5.50) 

k=l k=i 

However,  by  (5.45),   the series 

Y . -2 -1 
k     P„ 

k=l 

converges so that by the strong law of large numbers ([5], p. 238, prop A) 

the right-hand side of (5.49) converges to zero almost surely uniformly 

in TcTj. 

As for X", by (5t3l), (5.50), and Stability Theorem 

k=l 

Y S1 
k k-1 

a.s. 
0 uniformly in TeT. , (5.51) 

so that the same is true for both terms on the right-hand side of (5.30), 

Therefore, (5.24) and (5.25) hold almost surely uniformly in TeT , 

which together with (5.14) terminates the proof. 

Theorems 2 and 3 appear also in a stronger version. 

45 SEL-67-098 



Theorem 5.     Let   {f  :  n = 1,2,...] be a sequence of pure strategies 

generated by the strategic rule  (*) of Chapter III;   let the 

sequence of probabilities   (3.2) satisfy the conditions  (5.l) and 

(5.2) of Theorem 1;  let the assumptions  (2.2) and  (lC;2) hold. 

Then 

|K(Wn(«n,«n))  -  cp(T)|= 0(max{pn,(npn)'l/2}) (5.52) 

uniformly In all TeT  . 

Proof. 

Proceeding as In the proof  of Theorem 4, we obtain the Inequality 

EMT.S^))  -  cp(T)  -  2Co pn <E{w(*n(*n)}  -  cp(T) 

< E{w(T,S^))   -  9(T) + 2Co pn   . (5.53) 

From  (5.49) and  (Q.38), we have 

E{w(T,Sn))  - (p(T) < 2^ mn'1  (n+l)1/2 p'1'2   . (5.54) 

Next,  by  (5.28) and Lemma 1 

ENT.S^)]  - q,(T) ^ECw^.S^^) - w(T,S^)} 

> -      max      E 
1=1,... ,m 

n 
i V M il 

k»0 

(5.55) 

so that by  (5.22) also 

EM-CS^))  -  q)(T) > -2^ mn'1  (n+l)l/2 p^l/2   . (5.56) 

Hence  (5.56),   (5.54) and  (5.53) give the statement. 

The theorem Is proven. 
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Chapter VI 

CONCLUDING REMARKS 

In this  last chapter,  let us make a few remarks concerning various 

assumptions we have made,  possible generalizations,  and relationships 

to other problems. 

First,   let us  consider the rate of convergence established  in 

Theorems 2,   3,   and 5.     It is easy  to see that,   for example,   the choice 

p    =n     ,0<q<l,  which satisfies both the conditions  (5.1)  and   (5.2) 
n -1 - 4r/l-3r 

and  (5.44)   and   (5.45), yields the maximum rate o(n )  under the 

assumptions  of Theorem 2,  that is,   c(n )  in the most unfavorable case 
-1/3 of r = 3,   and the maximum rate 0(n ) under the assumptions of Theorems 

3 and 5.    This  is,   of course,  considerably slower than the typical rate 
-1 /2 

0(n )  of Blackwell's and Hannan's  rules and others derived from them. 

Notice,  however,   that the strategic rule suggested in this paper does 

not make use of all the Information available to the player since the 

information obtained during active plays  is disregarded,  principally for 

the sake of  simplifying the proofs.     It is,  nevertheless,   conceivable 

that if  the disregarded information were used, the rate of converger.ee 

might be improved.    One way of doing this may be to record  the Ions dur- 

ing active plays as well and switch to another strategy as soon as the 

accumulated  loss for the strategy being used decreases under  the next 

largist value of accumulated losses  recorded before. 

As  far as  the assumptions of  the theorems are concerned,   the assump- 

tion  (u; r)  was necessary for the proofs and can hardly be removed unless 

the method of proofs is changed considerably.    The assumption  (2.2)  is 

merely a  technical matter,  as mentioned  earlier.    The remaining assump- 

tion  (2.l)  was  introduced to keep the variance of the random variables 

Y        nonzero  (see Lemmas 2 and 3).     For  the same reason,   the vector n 
n 

[see  (3.6)]   appeared in the definition of  the strategic rule  (*).     Some 

considerations  indicate,  however,   that  the same effect would be achieved 

without   the  assumption   (2.l)   If  we replaced  the vector  '1   in   (3,6)  by  the 

random vector with i-th component  (i = 1 m) equal  to sign  (w  (ö   ,a      ), 

Notice also   that neither the assumption   (2.1; nor the vector r|   is needed 

to establish  the truth of Theorems  4  and  5. 
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In Theorem 1,  we have proven uniform convergence in probability. 

Naturally,   a question arises  of  whether a stronger  convergence--i.e,, 

whether  convergence almost   surely can be proven.     This may quite be the 

case;   we were,   however,   unable to do this here and   the question remains 

open. 

Next,   let us discuss   briefly  the possibility  of  generalizing the 

results  to  infinite games   (i.e.,  when  the set A  is   infinite).    For A 

denumerable,   this might  in  principle be done by  letting  the random 

vectors V     take values  in  finite subsets A CA  (again with uniform dis- 
n n 

tribution on  the vertices  of   the simplex spanned  on A  )  and   then let 

m   ,   the cardinality ol  A   ,   tend  to infinity slowly  enough.     It  is clear, 
n n 

however,   that  in this  case  the convergence  in Theorems  1-5 may  not be 

uniform unless   the generic  game possesses some properties   (e.g.,   to be 

totally bounded in the sense of Wald's metric)  that makes it approximable 

by  finite games.    This  is  even more evident for  the case in which A is 

uncountable.    Nevertheless,   there is a large class  of games with the 

above properties  (e.g.,  games on the unit square,  polynomial games,  etc.) 

so  that some investigation  in this direction might be worthwhile. 

We would  also like to mention that the problem studied here is closely 

related  to the so-called  "two-armed bandit problem"   (see,  e.g.,  ref.   [7]); 

in fact,   it  Includes the  latter as a degenerate case.     The two-armed  (or 

more generally m-armed)  bandit problem can be briefly described as fol- 

lows:     Given are m independent  random experiments  with outcomes 0  (success) 

and  1   (failure) having probabilities  1 - n.   and  n   ;   i  = l,...,m;   respec- 

tively,   which are either  unknown or  to which of   the m experiments a par- 

ticular pair   (.;   ,   1 -ji.)   belongs  is  unknown.     These experiments  are 

independently repeated;   at  each step only one of   them is  allowed to be 

performed.     Tho problem  is   to find  a  rule for perl'orraing  these experiments 

that would minimize  the  expected average number  of   failures.     Clearly, 

no rule can do belter  than  to achieve min(;;.,..., n   1  which  is  nothing 
i m 

but  the value of  the minimum functional  ^ of  the game: with random loss 

function   ( -.A.u),   where  J  is  one-element set   f   )   and 

,.",) 
1     with probability  ;; 

0     with probability   l-;i i   =   l,...,m 
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Thus  our rule can be used for  this problem and we conclude fron 

Theorem 4  that  the average number of  failures converges  almost surely to 

minfrt,,...,n  1  while Theorem 5  states  that the expectation of  a failure 
1 m 

in n-th experiment converges  to min(n1,...,n ] with the rate 

0(max{pn,(npn)'1/2]). 

Finally,   let us make a few remarks  about the case when,   instead of 

a sequential game against Nature,  we consider a sequential game against 

an opponent  (malicious or not);   that is,   if we allow the strategies   ;- 
n 

of  the first player to depend on the past strategies of  the second 

player  and  on the losses  incurred.    This is the case studied recently by 

A.  Banos  [l]  under  the same assumptions  about the information available 

to the second player as we have made and under nearly  the same assump- 

tions  about the generic game,   viz.,  A finite and  (IC',2).     He succeeded 

in exhibiting a strategic rule for the player with the property  that 

the average loss is, with probability one,   asymptotically not greater 

than the value of the generic game  (= maximum of the minimum functional). 

However,  as can easily be seen,   his strategic rule need not have the 

optimum property  (5.3) even in  the sequential game against Nature.    On 

the other hand,  our rule fails  to have this optimum property in a sequen- 

tial  game against an opponent  and,   in general,  does not  even guarantee 

that  the average loss will  achieve the value of the game.     This can be 

seen from the following simple example  (due to T. M.  Cover):    Consider 

the generic game of "matching pennies,"  i.e., A = 6 =   {0,1}  and w(13,a) = 

w(t).a)  =   Iv'-al   nonrandom,  and  suppose that  the opponent decided to play 

for  each n = 1,2,...,  ,3    ,  =  1  if f    =0,   and vice versa.     Since, 
n+1        n 

according to our rule, the player does not change his strategy between 

successive active plays and since the condition p ; 0 Implies that long 

runs of active plays will occur more and more often, the average loss 

incurred by the player will tend to 1 while the value of the game is 1/2. 

Thus the only rule known at this time which retains the optimum property 

(5.3) (in the a.s. sense) in both the sequential game against Nature and 

against an opponent is the rule of D. Blackwell [3].  The question remains 

open whether a similar rule exists even when the player's information is 

so severely limited as assumed in this paper. 
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TR No.   6151-3 

10     PISTHIHUTION   STATLMENT 

Qualified requesters may obtain copies from DDC.  Foreign announcement and 
dissemination are limited. 

II     iUT'PL tMENT ARV   NOTES 12     SPONSORING  MILITANT   ACTIVITT 

Joint Services Electronics Programs 
(U.S. Army, U.S. Navy, U.S. Air Force) 

I 1     AHSTRAC T 

A repetitive play of a game against Nature is considered under the assumption 
that the player knows nothing about the game except his own set of strategies. 
After each play, he is told the value of the random loss incurred by him. A 
strategic rule for the player is defined with the property that the average loss 
achieves asymptotically the minimum functional of the game in probability and 
uniformly in all sequences of Nature's strategies. The rate of convergence of 
expected average losses is shown as well. 
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